Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Front Immunol ; 14: 1162739, 2023.
Article in English | MEDLINE | ID: covidwho-2314172

ABSTRACT

Cytokines are secretion proteins that mediate and regulate immunity and inflammation. They are crucial in the progress of acute inflammatory diseases and autoimmunity. In fact, the inhibition of proinflammatory cytokines has been widely tested in the treatment of rheumatoid arthritis (RA). Some of these inhibitors have been used in the treatment of COVID-19 patients to improve survival rates. However, controlling the extent of inflammation with cytokine inhibitors is still a challenge because these molecules are redundant and pleiotropic. Here we review a novel therapeutic approach based on the use of the HSP60-derived Altered Peptide Ligand (APL) designed for RA and repositioned for the treatment of COVID-19 patients with hyperinflammation. HSP60 is a molecular chaperone found in all cells. It is involved in a wide diversity of cellular events including protein folding and trafficking. HSP60 concentration increases during cellular stress, for example inflammation. This protein has a dual role in immunity. Some HSP60-derived soluble epitopes induce inflammation, while others are immunoregulatory. Our HSP60-derived APL decreases the concentration of cytokines and induces the increase of FOXP3+ regulatory T cells (Treg) in various experimental systems. Furthermore, it decreases several cytokines and soluble mediators that are raised in RA, as well as decreases the excessive inflammatory response induced by SARS-CoV-2. This approach can be extended to other inflammatory diseases.


Subject(s)
Arthritis, Rheumatoid , Chaperonin 60 , Humans , COVID-19 , Cytokines/metabolism , Inflammation/drug therapy , Peptides/pharmacology , Peptides/therapeutic use , SARS-CoV-2/metabolism , Chaperonin 60/pharmacology , Chaperonin 60/therapeutic use
2.
Cell Stress Chaperones ; 26(3): 515-525, 2021 05.
Article in English | MEDLINE | ID: covidwho-1101014

ABSTRACT

Hyperinflammation distinguishes COVID-19 patients who develop a slight disease or none, from those progressing to severe and critical conditions. CIGB-258 is a therapeutic option for the latter group of patients. This drug is an altered peptide ligand (APL) derived from the cellular stress protein 60 (HSP60). In preclinical models, this peptide developed anti-inflammatory effects and increased regulatory T cell (Treg) activity. Results from a phase I clinical trial with rheumatoid arthritis (RA) patients indicated that CIGB-258 was safe and reduced inflammation. The aim of this study was to examine specific biomarkers associated with hyperinflammation, some cytokines linked to the cytokine storm granzyme B and perforin in a cohort of COVID-19 patients treated with this peptide. All critically ill patients were under invasive mechanical ventilation and received the intravenous administration of 1 or 2 mg of CIGB-258 every 12 h. Seriously ill patients were treated with oxygen therapy receiving 1 mg of CIGB-258 every 12 h and all patients recovered from their severe condition. Biomarker levels associated with hyperinflammation, such as interleukin (IL)-6, IL-10, tumor necrosis factor (TNF-α), granzyme B, and perforin, significantly decreased during treatment. Furthermore, we studied the ability of CIGB-258 to induce Tregs in COVID-19 patients and found that Tregs were induced in all patients studied. Altogether, these results support the therapeutic potential of CIGB-258 for diseases associated with hyperinflammation. Clinical trial registry: RPCEC00000313.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19 Drug Treatment , Chaperonin 60/therapeutic use , Cytokine Release Syndrome/drug therapy , Adult , Aged , Aged, 80 and over , Anti-Inflammatory Agents/chemistry , COVID-19/blood , COVID-19/complications , Chaperonin 60/chemistry , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/complications , Female , Humans , Inflammation/blood , Inflammation/complications , Inflammation/drug therapy , Interleukin-10/blood , Interleukin-6/blood , Male , Middle Aged , SARS-CoV-2/drug effects , T-Lymphocytes, Regulatory/drug effects , Tumor Necrosis Factor-alpha/blood , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL